Sharp upper bounds for the Laplacian graph eigenvalues
نویسندگان
چکیده
منابع مشابه
Sharp upper bounds for the Laplacian graph eigenvalues
Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...
متن کاملBounds for Laplacian Graph Eigenvalues
Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.
متن کاملGraph Embeddings and Laplacian Eigenvalues
Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n×n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix Γ; the best possible bound based on this embedding is n/λmax(Γ Γ). Howeve...
متن کاملUpper Bounds for the Eigenvalues Ofdifferential Equations
Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2002
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00353-1